
The Maturing of the

Quality Improvement Paradigm
in the SEL

Victor R. Basili

Institute for Advanced Computer Studies
Department of Computer Science

University of Maryland

N94- 36485

/ $"-F3

LO
The Software Engineering laboratory uses a paradigm for improving the software process and
product, called the Quality Improvement Paradigm [Ba85, BaRo88]. But this paradigm has
evolved over the past 18 years, along with our software development pro_esses and product. Since
1976, when we first began the SEL, we have learned a great deal about improving the software
process and product, making a great many mistakes along the way. For example, we tried to assess
the quality of our processes and products before we understood what they were. When trying to
understand, we were data driven rather than goal and model driven. We tried to use other people's
models to explain our environment rather than recognizing we had to build models of our own
environment before we could compare it with others.

The learning process has been more evolutionary than revolutionary. We have generated lessons
learned that have been packaged into our processes, products and organizational structure over the
years. We have used the SEL as a laboratory to build models, test hypotheses. We have used the
University to test high risk ideas and develop technologies, methods and theories when necessary.
We have learned what worked and didn't work, applied ideas when applicable and kept the
business going with an aim at continually improving and learning.

This paper offers a personal perspective on how our approach to quality improvement has evolved
over time and where I think we are evolving. I will try to carry you through various phases of our
evolutionary learning process, arbitrarily breaking the learning into five year periods, showing you
some of the things we did wrong and what caused us to change our ideas. I will use the Quality
Improvement Paradigm steps themselves, as it presently stands, as a guidelines to how our
thinking evolved based upon experiences in the SEL.

But first, let me give you the'Quality Improvement Paradigm, as it is currently def'medLIn its full

riversion, it can be broken up into six steps:

i 1. Characterize-- the current project and its environment with respect to the

--- appropriate models and metrics.
=

i
2. S e t the quantifiable goals for successful project performance and improvement.

3. Choose the appropriate process model and supporting methods and tools for
this project.

4. Execute the processes, construct the products, collect, validate and analyze
the data to provide real-time feedback for corrective action.

5. Analyze the data to evaluate the current practices, determine problems, record
findings, and make recommendations for future project improvements.

- i

!

i

i

f

=

SEW Proceedings

-.4<6

39 SEL-93-003

6. Package the experience in the form of updated and refined models and other
forms of structured knowledge gained from this and prior projects and save it in an

experience base to be reused on future projects.

We often use a shortened version of the paradigm which is def'med as three steps: understand,

assess, and package. These steps can be mapped onto the six steps by noting that understand is

step 1, assess is steps 2 through 5 and package is step 6.

Each of these steps changed over time, either in how we defined them or how we implemented
them. Characterization went from collecting metrics to defining baselines to building models. Goal

setting started out as simply data collection, evolved to being goal driven and f'mally goal and
model driven, i.e., data collected based upon goals and quantifiable models. The processes,
methods and technologies available in the process selection step evolved from combinations of
heuristic methods, to well-defined technologies, to high impact, combinations of integrated

technologies, methods, and life cycle models, to the evolving and tailoring processes to the
situation. During process execution, we moved from loosely monitored projects to closely
monitored projects with well def'med feedback loops. In the beginning we collected too much data,

independent of the process. Later data became embedded in the process. The types of analysis we
performed in the beginning were correlations and regressions, and we have evolved to other forms
of model building, based upon the nature of the software engineering data, and to the use of
qualitative analysis. Packaging began as recording and generating lessons learned but evolved to
focused tailored packages that were integrated into the development processes. We started by
packaging defect and resource baselines and product characteristics and have been evolving to
seeking the relationship between process and product characteristics.

1976 - 1980

What we did

We began the SEL in 1976. At that time, the paradigm looked like:
1. "'- ---'I '--_ "_Apply Models
2. _'-" r,--l- Measure

bJl., I, _..I _l.a _aO

3. _ Study Process
4. Execute Process
5. Analyze Data Only
6. Paekage- Record

We tried to characterize and understand by using other people's models. For example we spent a

great deal of time trying to apply such models as the Rayleigh curve model of resource allocation,
reliability growth models, etc. without asking ourselves if they were appropriate for our particular
environment.

We decided on measurement as an abstraction mechanism and developed data collection forms and
measurement tools. We collected data from half a dozen projects for a simple data base and we
defined the GQM as in informal mechanism to help us organize the data around the study of defects

[BaWe84].

It had not really occurred to us to select process as we did not yet understand that process was a
variable that needed to be selected and tailored to the environment. This was because we had not

yet understood our environment sufficiently. So we started to study process, applied heuristically

SEW Proceedings 40 SEL-93-003

defined combinations of existing processes and began to run controlled experiments at the
university with students.

During development, data collection was an add-on activity and was loosely monitored. We
analyzed data only and began to build baselines and looked for correlations. We recorded what we
found, built defect baselines and resource models and measured project characteristics.

What we Learned

During this period we learned that we needed to better understand the environment, projects,
processes, products, etc. We needed to build our own models to understand and characterize our
environment, we could not just use other people's models. Those models were built for their
environments and could not be generalized easily.

We learned that we needed to understand what factors create similarities and differences among
projects so we know the appropriate model to apply. This included the need to understand how to
choose the right processes in order to create the desired product characteristics.

We realized that evaluation and feedback are necessary for project control and that data collection
has to be goal driven; we could not just collect data and then figure out what to do with it.

From our perspective, the major improvement technology that emerged from this period was the
Goal/Question/Metric Paradigm, even though it was still quite primitive.

An Example

As an example of what we learned, we tried to apply the 40/20/40 rule in SEE It had been reported
by Boehm [Bo73] that approximately 40% of project resources were expended in analysis and
design, 20% in code, and 40% in checkout and test. Shortly thereafter, Walston and Felix reported
that in IBM/FSD, 35% of the resources were expended in analysis and design, 30% in code, 25%
in checkout and test and 10% in other, which clearly violated the 40/20/40 rule [WaFe77]. But in
the SEL, we were collecting two types of resource data, phase data and activity data. The phase
data represented milestone data. That is, analysis and design data represented the resources
expended up to the design review milestone (CDR). The activity data represented what a developer
did each week, e.g., 20 hours designing, 10 hours coding, 5 hours in training, 5 hours in travel.
Using the phase data, we found that 20% of the resources were expended in analysis and design,
45% in code, 28% in checkout and test and 5% in other, while using the activity data, we found
that 21% of the resources were expended in analysis and design, 28% in code, 23% in checkout
and test and 27% in other.

TRW IBM SEL

Phase Activity

Analysis/Design 40% 35%

Code 20 30

Checkout/Test 40 25

Other I0

20% 21%

45 28

28 23

5 27

SEW Proceedings 41 SEL-93-003

Table 1. Resource Allocation Data

It became clear that the data from the other environments represented phase data rather than activity

data since they did not collect activity data. It also was clear that each of the organizations defined
their milestones and phases differently, so each organization has a different model for resource
allocation and it is hard to compare them. Phase data is highly dependent on how an organization
defines its milestones. Since phase data and activity data represent two entirely different things, it
is not clear what the activity data look like in these other organizations. It should be noted that this

example represents an argument why it would be very difficult to build a national data base across
environments and share and compare data.

1981 - 1985

What we did

In the early eighties, the paradigm had evolved to look more like:
1. Characterize/Understand
2. Set Goals
3. Select Process
4. Execute Process

5. Analyze
6. Packagc Record

To characterize and understand the environment we built our own baselines/models of cost,
defects, process, etc. We began to set goals for all data collected and expanded our definition of the
GQM to perform studies across multiple areas and projects. We began to incorporate subjective
metrics into our measurement process. To help us select process we experimented with well
def'med technologies and began experiments with high impact technology sets, e.g., Ada & OOD.
During project execution, we collected less data than we had before and moved the data from a file
system to a commercial, relational data base. We began to understand how to combine some of our
off-line controlled experiments with the case studies in the SEL. We shifted the analysis emphasis
to the process and its relation to product characteristics. We recorded lessons learned, and began
formalizing processes, products, knowledge and quality models.

What we Learned

During this period we learned that software development follows an experimental paradigm, i.e.,
you need to set your goals up front and check that you are achieving those goals. The design of
experiments is an important part of improvement and evaluation and feedback are necessary for
learning. We also learned that we needed to better understand relationships between various kinds
of experiences, e.g., the relationship between processes and the set of product characteristics it
evokes or the resources required to perform it, the relationship between component size and

complexity and defect rate. To do this process, product, and quality models need to be better
defined, experimentally tested, and improved.

We learned that reusing experience in the form of processes, products, and other forms of
knowledge is essential for improvement. We need to learn what works and what does not work
and what needs to be modified and what needs to be thrown out. At the same time we need to

experiment with new technologies, motivated by our experiences.

By this time, we had more data than we knew what to do with them, but we did not have the data

SEW Proceedings 42 SEL-93-003

we needed to help us interpret what was happening. We learned that you can drown in too much
data, especially if you don't have goals. Besides having a good data base, you need to store your
models as well as your data

An Example

As an example of demonstrating that we need to understand the relationship between variables,
consider the study in the SEL where we compared fault rate with component size and complexity.
In a study in the early eighties, we found that the simple minded view that defect rate increases
with size did not hold in the SEL environment. In fact, we found the opposite for the actual data

we had available for study [BaPe84]. We believe this relationship is due to the fact that interface
defects dominate the problem of the complexity of the individual component, when components are
small.

On the other hand, we have hypothesized that as the size grows beyond the developer's ability to

cope with its size and complexity, the complexity.of the individual component will dominate the
complexity of the interface and fault rate will again grow.

Fault
Rate A ctual

Hypothesized

Size/Complexity

Figure 1. Relationship between Fault Rate and Size or Complexity

We have since found support for the first statement, i.e., fault rate decrease with size and
complexity in data from several companies. This result was a surprise at the time since most people
believed that smaller components were better. However. the relationship between size and fault rate
appears not to be that simple.

1986 - 1990

What we did

It was in this period that the QIP took its current form, recording being changed to packaging.
1. Characterize/Understand

SEW Proceedings 43 SEL-93-O03

2. Set Goals
3. Select/Tailor Process
4. Execute Process

5. Analyze
6. Package

To characterize and understand we worked on capturing experience through models. Goals and
models became the commonplace driver of measurement and we built SME [Va87], a model-based

experience base with dozens of projects. We began to tailor and evolve high impact technologies
based on experience, e.g., Cleanroom, and experimentation and feedback became an integral part
of the QIP. During process execution, we embedded the data collection process into the
development processes and more closely monitored projects, especially those where we were
experimenting with new approaches.We began to demonstrate various (process, product)
relationships, e.g., the effect of a particular method on defect reduction. We developed focused
tailored packages, e.g., generic code components, and learned to transfer technology better
through organizational structure, experimentation, and evolutionary culture change.

What we Learned

We learned that experience needs to be evaluated, tailored, and packaged for reuse. That is, you
just cannot write lessons learned documents, you have to analyze and synthesize what has been
learned and integrate it into the existing knowledge so that it is usable by future projects. This
requires organizational support and resources.

A variety of experiences can be reused, e.g., process, product, resource, defect and quality
models. But processes must be put in place to support the reuse of experience and the development
process must be modified to take advantage of reusable experiences. Experiences can be packaged
in a variety of ways, e.g., equations, histograms, algorithms.

Packaged experiences need to be integrated. When introducing a new process, an organization
needs to make sure it fits and is supported by the other processes being, used, that is, it needs to
understand the relationship between various changes in the parameters m one model and the effect
on another model. If I modify my reading technology, what will be the effect on the class of
defects I find, the resources allocated for rework, etc.

There is a tradeoff between reuse and improvement. Evolution is slow as I cannot introduce too
much change at one time. When I do introduce change, I loose experience and predictability. On
the other hand, processes have to be changed to cope with the continuously growing need for

quality.

During this period we evolved the GQM to include templates and models [BaRo88] and formalized
the organization via the Experience Factory Organization [Ba89].

An Example

To demonstrate that how a technology is packaged and integrated has a strong effect on its
effectiveness, consider our experiences with evaluating and integrating reading technology.
We ran a controlled experiment comparing equivalence partitioning testing, structural testing, and
reading by step-wise abstraction[BaSe87]. Reading was found to be more effective and efficient
than testing in uncovering defects. Based upon these results, we put reading into practice as a
technology in the SEE But we found that reading had little effect on defects. This appeared to be
because the readers did not read well because they knew they were going to test and believed that,

SEW Proceedings 44 SEL-93-003

in spite of the experimental results, testing was better. Our belief that reading is more effective
when not followed by developer testing motivated our use of the Cleanroom approach
[SeBaBa87]. When embedded in the Cleanroom approach, reading did demonstrate a substantial
lowering of defect rates.

1991 - 1995

What we are doing

This bring us up to the current time. The current evolution of the QIP appears to be aimed at
instantiating the steps, making them more specific, providing details, and developing support
technologies.

To characterize and understand the project and environment, we are building a repository of
(process,product) relationship models that characterize the SEL environment. We are working on
automating the GQM in order to support the setting of goals. We are studying what experience is
exportable to other environments in help other organizations take advantage of our process
experience We are working on building models to measure process conformance and domain
understanding.

During execution of the processes, we are working to capture the details of experience by
providing more interaction between developers and experimenters and more effective feedback
mechanism. This will help us to evolve processes that are more focused and detailed for our local
needs and goals.

We are building qualitative analysis approaches to extract our experiences and provide input to the
data models. We continue to evolve SME and we continue the evolution and packaging of the

Experience Factory Organization.

Many of the current, specific SEL activities are covered in this workshop proceedings. However,
there are more global SEL activities aimed at evolving the application of the QIP to other
organizations. These activities concern packaging the SEL organizational experience for other
groups in NASA, understanding whether and how to move activities to common use, and better
integrating reuse into the development process

The research activities are based upon instantiating the steps of the Quality Improvement Paradigm

by providing support technologies and automation, and integrating the various activities.

Where the research is going

The table below shows some of our current research interests aimed at instantiating the Quality

Improvement Paradigm.

Step Studies / Research Projects

Characterize

Set goals

Perform domain analysis to identify similar projects using techniques
appropriate for SE data

Automate the model-based GQM as much as possible

SEW Proceedings 45 SEL-93-003

Choose process

Execute processes

Analyze data

Package experience

Develop technologies tailorable to the specific project needs

Build a more powerful, flexible experience base

Learn how to run more efficient experiments and combine controlled

experiments with case studies

Build better models and modeling notations

Table 2: lnstantiating the Quality Improvement Paradigm

Example research projects

To give some specific examples of research projects, let us consider three: the work on domain
analysis, reading technologies, and empirical modeling.

Domain Analysis

Problem Addressed:
How do you recognize which projects are most like yours in order to use the experiences from
these projects to allow you to build models, choose similar process, etc.?

We have established procedures to identify and analyze software domains within and across
organizations so that opportunities for reuse of experiences may be identified [Lionel Briand]. This
has entailed defining both an experience-based procedure taking advantage of intuition and expert

knowledge as well as a data-based procedure for when data is available.

yalidation StrategY:
We are using both- procedures to identify domains within NASA, and have analyzed data within the
SEL data base to determine whether or not our assumptions are supported locally.

Focused Tailored Reading Techniques

problem Addressed:
How do you tailor a process to the project goals and local organizational characteristics?

Have developed scenario-based technologies for reading various documents that are tailorable and
can be focused for the particular environment. As an example, we have developed several model-
based scenarios that take advantage of local knowledge and technical models to define a technology

for reading. For example, defect-based reading is based upon the different defect classes, e.g.,
missing functionality, data type inconsistencies, in a requirements document that have been found

in requirements [BaWe81].

We have run a couple of controlled experiments that show that defect-Based reading is significantly
more effective that ad hoc reading or checklists [PoVo94].

SEW Proceedings 46 SEL'93-003

Empirical Modeling: Optimized Set Reduction

Problem Addressed:
How do you build empirical models that allow you to define interpretable, accurate, easy to use
and automate modeling procedures that take into account the specific constraints of software

engineering data?

OSR has been developed based on pattern matching; searching for similar experiences in the data
set and the use of non-parametric statistics. There are no functional assumptions made; the
approach handles interactions and inter dependencies among variables, and no "learning"
parameters need to be tuned before hand.

We have shown OSR to be easier to interpret and more accurate than regression and tree-based
approaches for cost modeling and defective module prediction [BrBaTh92, BrBaHe93]. A
prototype tool exists and a commercial tool is under development.

Conclusion

Over the past 18 years we have learned a great deal about software improvement. Our learning
process has been continuous and evolutionary like the evolution of the software development
process itself. We have packaged what we have learned into our process, product and
organizational structure. This evolution is supported by the symbiotic relationship between
research and practice. It is based upon a belief that software engineering is a laboratory science. As
such it involves the interaction of research and application, experimentation and development. It is
a relationship that requires patience and understanding on both sides, but when nurtured, really

pays dividends!

References

[Ba85]
V. R. Basili, "Quantitative Evaluation of Software Engineering Methodology," Proc. of the First
Pan Pacific Computer Conference, Melbourne, Australia, September 1985 [also available as
Technical Report, TR-1519, Dept. of Computer Science, University of Maryland, College Park,
July 1985].

[Ba89]
V. R. Basili, "Software Development: A Paradigm for the Future", Proceedings, 13th Annual
International Computer Software & Applications Conference (COMPSAC), Keynote Address,
Orlando, FL, September 1989

[Ba90]
V. R. Basili, "Software Modeling and Measurement: The Goal/Question/Metric Paradigm,"
University of Maryland Technical Report, CS-TR-2956, UMIACS-TR-92-96, September 1992.

[BaRo88]
V. R. Basili, H. D. Rombach "The TAME Project: Towards Improvement-Oriented

SEW Proceedings 47 SEL-93-003

Software Environments," IEEE Transactions on Software Engineering, vol. SE-14, no. 6, June

1988, pp. 758-773.

[BaPe84]
V. R. Basili, B. Perricone, "Software Errors and Complexity: An Empirical Investigation," ACM
Communications, vol. 27, no. 1, January 1984, pp. 45-52.

[BaSe87]
Victor R. Basili, R. W.
IEEE Transactions on
1278-1296.

Selby, "Comparin.g the Effectiveness of Software Testing Strategies,"
Software Engineenng, Vol. SE-13, No. 12, December 1987, pp.

[BaWe84]
V. R. Basili, D. M. Weiss, "A Methodology for Collecting Valid Software Engineering Data,"
IEEE Transactions on Software Engineering, vol. SE-10, no.6, November 1984, pp. 728-738.

[BaWe81]
v u Basili D M Weiss, "Evaluation of a Software Requirements Document by Analysis of

Ch_ge Data:" _oce_edings of the Fifth International Conference on Software Engineering, San
Diego, USA, March 1981, pp. 314-323.

[Bo73]
B. W. Boehm, "Software and its Impact: A Quantitative Assessment," Datamation 19, No.5 48-

59 (My 1973).

[BrBaTh92]
Lionel C. Briand, Victor R. Basili, and William M. Thomas, "A Pattern Recognition Approach for

Software Engineering Data Analysis," IEEE Transactions of Software Engineering, Vol. 18, No.

11, pp. 931-942, November 1992.

[BrBaHe93]
Lionel C. Briand, Victor R. Basili, and Christopher J. Hetmanski, '_Developing Interpretable
Models for Identifying High Risk Software Components," IEEE Transactions on Software

Engineering, November 1993.

[PoVo94] "AnAdam Porter, Larry Votta, Experiment to Assess different Defect Methods for Software
Requirements Inspections," Proceedings of the 16th ICSE, Sorrento, Italy, May 1994.

[SeBaBa87]
R. W. Selby, Jr., V. R. Basili, and T. Baker, "CLEAN'ROOM Software Development: An
Empirical Evaluation," IEEE Transactions on Software Engineering, Vol. 13 no. 9, September,
1987, pp. 1027-1037.

[Va87]
J. D. Valett, "The Dynamic Management Information Tool (DYNAMITE):Analysis of the
Prototype, Requirements and Operational Scenarios," M.Sc. Thesis, University of Maryland,
1987.

[WaFe77]
C. E. Walston and C. P. Felix, "A Method of Programming Measurement and Estimation," IBM

Systems Journal, Vol. 16, No. 1, 1977, pp.54-73.

SEW Proceedings 48 SEL-93-003

The Maturing of the
Quality Improvement Paradigm

in the SEL

Victor R. Basili

Institute for Advanced Computer Studies

Department of Computer Science

University of Maryland

December 1-2, 1993

Maturing the Improvement Paradigm
Since 1976

In 18 years have learned a great deal, e.g.,

tried to assess, before understanding

were data driven rather than goal and model driven

tried to use other people's models to explain our environment

Learning process has been more evolutionary than revolutionary

Generated lessons learned that have been packaged into our

process, product and organizational structure

Used the SEL as a laboratory to build models, test hypotheses,

Used the University to test high risk ideas

Developed technologies, methods and theories when necessary

Learned what worked and didn't work, applied ideas when applicable

Kept the business going with an aim at improvement, learning

Talk offers my perspective on
how we have evolved
and where we are going

SEW Proceedings 49 SEL-93-003

Maturing the Improvement Paradigm
Quality Improvement Paradigm

Characterize the current project and its environment with respect to the
appropriate models and metrics.

Set the quantifiable goals for successful project performance and
improvement.

Choose the appropriate process model and supporting methods and tools
for this project.

Execute the processes, construct the products, collect, validate and
analyze the data to provide real-time feedback for corrective action.

Analyze the data to evaluate the current practices, determine problems,
record findings, and make recommendations for future project
improvements.

Package the experience in the form of updated and refined models and
other forms of structured knowledge gained from this and prior projects and
save it in an experience base to be reused on future projects.

Maturing the Improvement Paradigm
Major Activity Evolution

Characterize
metrics • baselines • models

Set Goals
data driven • goal driven • goal/model driven

Select Process
heuristic • defined • high impact • evolving

combinations technologies combinations processes

Execute Process
add-on data collection • less data • data embedded in process

loosely monitored • closely monitored/feedback

Analyze
correlations • regressions • model • qualitative analysis

Package
recording • lessons leamed • focussed tailored packages

defect • resources • product • process x product
baselines models characteristics relationships

SEW Proceedings 50 SEL-93-003

Maturing the Improvement Paradigm
1976 - 1980

Chcr---ctc:izc/_ Apply Models
Looked at other people's models, e.g., Raleigh curve, MTTF models

^, r,-.^., Measurement
Decided on measurement as an abstraction mechanism
Developed data collection forms and measurement tool
Collected data from half a dozen projects for a simple data base
Defined the GQM to help us organize the data around a particular study

Study Process
Used heuristically defined combinations of existing processes
Ran controlled experiments at the University

Execute Process
Data collection was an add-on activity and was loosely monitored

Analyze Data Only
Mostly build baselines and looked for correlations

Record
Recorded what we found, build defect baselines and resource models

Maturing the Improvement Paradigm
1976 - 1980

Learned

Need to better understand environment, projects, processes, products, etc.

Need to build our own models to understand and characterize
- can't just use other people's models

Need to understand the factors that create similarities and differences
among projects so we know the appropriate model to apply

Need to understand how to choose the right processes to create the desired
product characteristics

Evaluation and feedback are necessary for project control

Data collection has to be goal driven
- can't just collect data and then figure out what to do with it

Developed the Goal/Question/Metric Paradigm

SEW Proceedings 51 SEL-93-003

Maturing the Improvement Paradigm
1976 - 1980

Trying to Apply the 40/20/40 Rule In SEL

TRW IBM SEL
Phase Activity

Design 40% 35% 20% 21%

Code 20 30 45 28

Checkoul/Test 40 25 28 23

Other 10 5 27

The 40/20/40 rule does not apply to us

The rule does not imply what you may think

Effort

IMaturing the Improvement Paradigm]l
191_-19t_ I

Applying a reso0_e AIr6P.ation Model

Actual Data

h Curve

Time

Need to understand the local context

Local context makes a big difference

J

SEW Proceedings 52
SEL-93-003

Maturing the Improvement Paradigm
1981 - 1985

Ghareetefice/Understand
Built our own baselines/models of cost, defects, process, etc.

Set Goals
Began to set goals and defined the GQM to study multiple areas
Began to incorporate subjective metrics into our measurement process

Select Process
Experimented with well defined technologies
Began experiments with high impact technology sets, e.g., Ada & OOD

Execute Process
Began to understand how to combine experiments and case studies
Collected less data and stored it in a relational data base

Analyze
Shifted emphasis to process and its relation to product characteristics

P=ch=gc Record
Recorded lessons learned

Began formalizing process, product, knowledge and quality models

Maturing the Improvement Paradigm
1981 - 1985

Learned

Software development follows an experimental paradigm, i.e.,
Design of experiments is an important part of improvement
Evaluation and feedback are necessary for learning

Need to experiment with new technologies

Need to learn about relationships
- process, product, and quality models need to be better defined

Reusing experience in the form of processes, products, and other forms of
knowledge is essential for improvement

Can drown in 1oo much data, especially if you don't have goaJs

Need a data base and you need to store your models as well as your data

Developed the QIP as:
Characterize, Set goals, Choose process, Execute, Analyze, and Record

SEW Proceedings 53 SEL-93-003

f

Fault
Rate

I Maturing the Improvement Paradigm

1981-1985

Measuring Fault Rate against Size and Complexity
lUll III

Size/Complexity

We need to understand the relationship among vanables
The relationship between fault rate and size is non-linear J

Maturing the Improvement Paradigm
1986 - 1990

Characterize/Understand
Worked on capturing experience in models

Set Goals
Goals and Models became the commonplace driver of measurement
Built SME, a model-based experience base with dozens of projects

Select Process
Tailored and evolved the high impact technologies based on experience
Experimentation and feedback became and integral part of the QIP

Execute Process
Embedded data into the processes and closely monitored study projects

Analyze
Demonstrated various (process, product) relationships

Package
Developed focussed tailored packages, e.g., generic code components
Learned to transfer technology better through organizational structure,

experimentation, and evolutionary culture change

SEW Proceedings 54 SEL-93-003

Maturing the Improvement Paradigm
1986 - 1990

Learned

Experience needs to be evaluated, tailored, and packaged for reuse

There is a tradeoff between reuse and improvement

Software processes must be put in place to support the reuse of experience

A variety of experiences can be reused, e.g., process, product, resource,
defect and quality models

Experiences can be packaged in a variety of ways, e.g., equations,
histograms, algorithms

Packaged experiences need to be integrated
,°.

Reformulated QIP as:
Characterize, Set goals, Choose process, Execute, Analyze, and Package

Evolved GQM to include templates and models

Formalized the organization via the Experience Factory Organization

Maturing the Improvement Paradigm
1986 - 1990

Evaluating and Integrating Reading

Testing vs. Reading experiment

Reading more effective and efficient than testing

Reading in Practice

Reading had little effect

Reading as part of Cleanroorn at the University

Reading had a high impact

Reading as part of Cleanroom in the SEL

Reading had a high impact

How a technology is packaged and integrated has a strong effect
Reading more effective when not followed by testing

SEW Proceedings 55 SEL-93-003

Maturing the Improvement Paradigm
1990 - 1995

Characterize
Building (process,product) relationship models

Set Goals
Automating the GQM

Select Process
Study what experience is exportable
Study process conformance and domain understanding

Execute Process
Capture the details of experience - more interaction between developers

and experimenters - more effective feedback
More focused and detailed on our local needs and goals

Analyze
Qualitative analysis to extract experiences

Package
Continuing to evolve SME
Evolving and packaging the Experience Factory Organization

Maturing the Improvement Paradigm
1991 - 1995

Many specific activities in the SEL will be covered in this workshop

SEL activities aimed at evolving the application of the QIP concern

packaging the SEL organizational experience for NASA

understanding whether and how to move activities to common use

better Integrating reuse into the development process

Research activities aimed at evolving the QIP are mostly based upon

instantlating the steps of the Quality Improvement Paradigm

providing support technologies and automation, and

integrating the various activities,

SEW Proceedings 56
SEL-93-003

Maturing the Improvement Paradigm
1991 - 1995

Instantiating the Quality Improvement Paradigm

Characterize

Set goals

Choose process

Execute processes

Analyze data

Perform domain analysis Io identify similar projects
using techniques appropriate for SE data

Automate the model-based GQM as much as

possible

Develop technologies tailorable to the specific
project needs

Build a more powerful, flexible experience base

Learn how to run more efficient experiments and
combine controlled experiments with case studies

Package experience Build better models and modeling notations

Maturing the Improvement Paradigm
Domain Analysis

Problem Addressed:

How do you recognize which projects are most like yours to build models,
choose process, etc.?

Current Status:

Establishing procedures to
identify and analyze software domains within and across organizations
so that opportunities for reuse of experiences may be identified.

We have defined
- a data-based procedure
- an experience-based procedure

Validation Strategy:

Identify domains within NASA, analyze data to determine whether or not our
assumptions are supported.

Lionel Briand

SEW Proceedings 57 SEL-93-003

Maturing the Improvement Paradigm
Focused Tailored Reading Techniques

Problem Addressed:

How do you tailor a process to the project goals and local organizational
characteristics?

Current Status:

Have developed scenario-based technologies for reading various documents
that are tailorable and can be focused for the particular environment

Example: Defect-based reading is based upon the different defect classes,
e.g., missing functionality, data type inconsistencies, in a requirements
document

Validation:

Defect-Based reading has been shown to be significantly much more
effective that ad hoc reading or checklists

AdamPorter,LarryVotta

Maturing the Improvement Paradigm
Empirical Modeling: Optimized Set Reduction

Problem Addressed:

How do you build empirical models that allow you to define interpretable,
accurate easy to use and automate modeling procedures that take into
account the specific constraints of software engineering data?

Current Status:

OSR has been developed based on
pattern matching; searching for similar experiences in the data set
nonparametric statistics
no functional assumptions, handles interactions and interdependencies
no =learning" parameters to be tuned before hand

Validation:

Shown easier to interpret and more accurate than
regression and treebased approaches
for cost modeling and defective module prediction

Prototype tool exists; commercial tool under development

I_io_elBriand,ChetHelmanskiBillThomas

SEW Proceedings 58 SEL 93 003

Maturing the Improvement Paradigm
Conclusion

Over 18 years we have learned a great deal about software improvement

Our learning process has been continuous and evolutionary like the
evolution of the software development process itself

We have packaged what we have learned into our process, product and
organizatmnal structure

The evolution is supported by the symbiotic relationship between
research and practice

It is a relationship that requires patience and understanding on both sides,
but when nurtured, really pays dividends!

SEW Proceedings 59 SEL-93-003

